Robotics

Chapter 3 Manipulator Kinematics

Kinematics

- Kinematics is the study of motion without regard for the forces that cause it.
- It refers to time-based and geometrical properties of motion.
- It ignores concepts such as torque, force, mass, energy, and inertia.

Forward Kinematics

• For a robotic arm, this would mean calculating the position and orientation of the end effector given all the joint variables.

Position and orientation of end effector (x,y,z) w.r.t $\{base\}=f(\theta 1, \theta 2, \theta 3.... \Theta n)$ Note: assuming that all joints are revolute.

- Inverse Kinematics is the reverse of Forward Kinematics. (!)
- It is the calculation of joint values given the positions, orientations, and geometries of mechanism's parts.
- It is useful for planning how to move a robot in a certain way.

 $(\theta 1, \theta 2, \theta 3.... \Theta n) = f(Position and orientation end effector(x,y,z)$

3.2 LINK DESCRIPTION

A manipulator may be thought of as a set of bodies connected in a chain by joints. These bodies are called links. Joints form a connection between a neighboring pair of links.

link twist.

 α_{i-1}

This angle is measured from axis i-1 to axis i in the right-hand sense about a_{i-1} .

Denavit-Hartenberg notation

3.3 LINK-CONNECTION DESCRIPTION

FIGURE 3.4: The link offset, d, and the joint angle, θ , are two parameters that may be used to describe the nature of the connection between neighboring links.

 $\begin{aligned} a_{i-1} &= \text{ the distance from } \hat{Z}_{i-1} &\text{ to } \hat{Z}_i &\text{ measured along } \hat{X}_{i-1} \\ \alpha_{i-1} &= \text{ the angle from } \hat{Z}_{i-1} &\text{ to } \hat{Z}_i &\text{ measured about } \hat{X}_{i-1} \\ d_i &= \text{ the distance from } \hat{X}_{i-1} &\text{ to } \hat{X}_i &\text{ measured along } \hat{Z}_i; \text{ and } \\ \theta_i &= \text{ the angle from } \hat{X}_{i-1} &\text{ to } \hat{X}_i &\text{ measured about } \hat{Z}_i. \end{aligned}$

3.4 CONVENTION FOR AFFIXING FRAMES TO LINKS

Intermediate links in the chain

The convention we will use to locate frames on the links is as follows: The \hat{Z} -axis of frame $\{i\}$, called \hat{Z}_i , is coincident with the joint axis i. The origin of frame $\{i\}$ is located where the a_i perpendicular intersects the joint i axis. \hat{X}_i points along a_i in the direction from joint i to joint i+1.

In the case of $a_i = 0$, \hat{X}_i is normal to the plane of \hat{Z}_i and \hat{Z}_{i+1} . We define α_i as being measured in the right-hand sense about \hat{X}_i , and so we see that the freedom of choosing the sign of α_i in this case corresponds to two choices for the direction of \hat{X}_i . \hat{Y}_i is formed by the right-hand rule to complete the *i*th frame. Figure 3.5 shows the location of frames $\{i-1\}$ and $\{i\}$ for a general manipulator.

3.4 CONVENTION FOR AFFIXING FRAMES TO LINKS

First and last links in the chain

We attach a frame to the base of the robot, or link 0, called frame {0}. This frame does not move; for the problem of arm kinematics, it can be considered the reference frame. We may describe the position of all other link frames in terms of this frame.

Frame $\{0\}$ is arbitrary, so it always simplifies matters to choose \hat{Z}_0 along axis 1 and to locate frame $\{0\}$ so that it coincides with frame $\{1\}$ when joint variable 1 is zero. Using this convention, we will always have $a_0 = 0.0$, $\alpha_0 = 0.0$. Additionally, this ensures that $d_1 = 0.0$ if joint 1 is revolute, or $\theta_1 = 0.0$ if joint 1 is prismatic.

For joint n revolute, the direction of \hat{X}_N is chosen so that it aligns with \hat{X}_{N-1} when $\theta_n = 0.0$, and the origin of frame $\{N\}$ is chosen so that $d_n = 0.0$. For joint n prismatic, the direction of \hat{X}_N is chosen so that $\theta_n = 0.0$, and the origin of frame $\{N\}$ is chosen at the intersection of \hat{X}_{N-1} and joint axis n when $d_n = 0.0$.

$$_{i}^{i-1}T = _{R}^{i-1}T_{Q}^{R}T_{P}^{Q}T_{i}^{P}T.$$

$$_{i}^{i-1}T = R_{X}(\alpha_{i-1})D_{X}(a_{i-1})R_{Z}(\theta_{i})D_{Z}(d_{i}),$$

$${}_{N}^{0}T = {}_{1}^{0}T {}_{2}^{1}T {}_{3}^{2}T \dots {}_{N}^{N-1}T.$$

Summary of link-frame attachment procedure

The following is a summary of the procedure to follow when faced with a new mechanism, in order to properly attach the link frames:

- 1. Identify the joint axes and imagine (or draw) infinite lines along them. For steps 2 through 5 below, consider two of these neighboring lines (at axes i and i+1).
- 2. Identify the common perpendicular between them, or point of intersection. At the point of intersection, or at the point where the common perpendicular meets the *i*th axis, assign the link-frame origin.
- 3. Assign the \hat{Z}_i axis pointing along the *i*th joint axis.
- **4.** Assign the \hat{X}_i axis pointing along the common perpendicular, or, if the axes intersect, assign \hat{X}_i to be normal to the plane containing the two axes.
- 5. Assign the \hat{Y}_i axis to complete a right-hand coordinate system.
- 6. Assign $\{0\}$ to match $\{1\}$ when the first joint variable is zero. For $\{N\}$, choose an origin location and \hat{X}_N direction freely, but generally so as to cause as many linkage parameters as possible to become zero.

RRR (or 3R) mechanism.

general configration all joints \(\delta\) zero

1-Assign frames on robot based on DH convention

2-fill in the DH parameters table

3-find ${}_{3}^{0}T$?

In page

X

Out of page

 \odot

zero conf.>>>all joint =zero if you assigned frams correctly>>all Xs in same direction.

- 1-Assign frames on robot based on DH convention
- 2-fill in the DH parameters table
- 3-find ${}_{3}^{0}T$?

RRR (or 3R) mechanism.

1-Assign frames on robot based on DH convention

2-fill in the DH parameters table

i	α_{i-1}	a_{i-1}	d_i	θ_i	i-1
1	0	0	0	$ heta_1$	0
2	0	L_1	0	$ heta_2$	1
3	0	L_2	0	θ_3	2

1-Assign frames on robot based on DH convention

2-fill in the DH parameters table

3-find ${}_{3}^{0}T$?

 $C12=cos(\theta 1+\theta 2)\neq C1C2\neq C1+C2$

general configration all joints # zero

1-Assign frames on robot based on DH convention

2-fill in the DH parameters table

Joint 1

1-Assign frames on robot based on DH convention

3-find ${}_{3}^{0}T$?

See notes

zero conf.>>>all joint =zero if you assigned frams correctly>>all Xs in same direction.

general configration all joints = zero

1-Assign frames on robot based on DH convention

2-fill in the DH parameters table

1-Assign frames on robot based on DH convention

2-fill in the DH parameters table

1-Assign frames on robot based on DH convention

2-fill in the DH parameters table

FIGURE 3.29: The 3R nonplanar arm (Exercise 3.3).

1-Assign frames on robot based on DH convention

2-fill in the DH parameters table

2-fill in the DH parameters table

2-fill in the DH parameters table

1-Assign frames on robot based on DH convention

2-fill in the DH parameters table

FIGURE 3.33: 3R nonorthogonal-axis robot (Exercise 3.11).

FIGURE 8.8: An orthogonal-axis wrist driven by remotely located actuators via three concentric shafts.

PUMA robot 6DOF

-90

-90

See notes

a2

a3

d3

d4

$$r_{11} = c_1[c_{23}(c_4c_5c_6 - s_4s_5) - s_{23}s_5c_5] + s_1(s_4c_5c_6 + c_4s_6),$$

$$r_{21} = s_1[c_{23}(c_4c_5c_6 - s_4s_6) - s_{23}s_5c_6 - c_1(s_4c_5c_6 + c_4s_6),$$

$$r_{31} = -s_{23}(c_4c_5c_6 - s_4s_6) - c_{23}s_5c_6,$$

$$r_{12} = c_1[c_{23}(-c_4c_5s_6 - s_4c_6) + s_{23}s_5s_6] + s_1(c_4c_6 - s_4c_5s_6),$$

$$r_{22} = s_1[c_{23}(-c_4c_5s_6 - s_4c_6) + s_{23}s_5s_6] - c_1(c_4c_6 - s_4c_5s_6),$$

$$r_{32} = -s_{23}(-c_4c_5s_6 - s_4c_6) + c_{23}s_5s_6,$$

$$r_{13} = -c_1(c_{23}c_4s_5 + s_{23}c_5) - s_1s_4s_5,$$

$$r_{23} = -s_1(c_{23}c_4s_5 + s_{23}c_5) + c_1s_4s_5,$$

$$r_{33} = s_{23}c_4s_5 - c_{23}c_5,$$

$$\begin{split} p_x &= c_1[a_2c_2 + a_3c_{23} - d_4s_{23}] - d_3s_1, \\ p_y &= s_1[a_2c_2 + a_3c_{23} - d_4s_{23}] + d_3c_1, \\ p_z &= -a_3s_{23} - a_2s_2 - d_4c_{23}. \end{split}$$

$${}_{6}^{0}T = {}_{1}^{0}T {}_{6}^{1}T = \begin{bmatrix} r_{11} & r_{12} & r_{13} & p_{x} \\ r_{21} & r_{22} & r_{23} & p_{y} \\ r_{31} & r_{32} & r_{33} & p_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

3.8 FRAMES WITH STANDARD NAMES

3.6 ACTUATOR SPACE, JOINT SPACE, AND CARTESIAN SPACE

FIGURE 3.16: Mappings between kinematic description